Power LED Driver

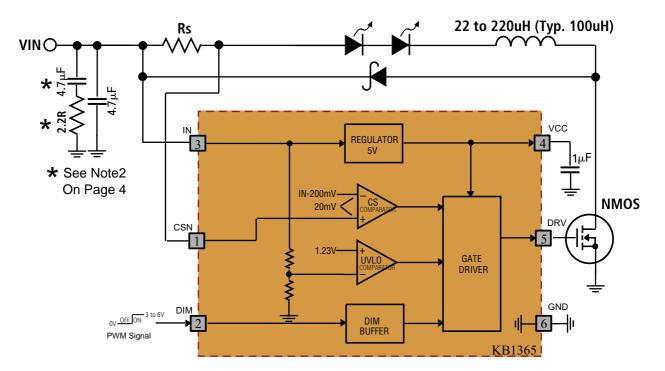
2MHz High-Brightness LED Drivers with High-Side Current Sense and 5000:1 Dimming

FEATURES

- 5.5V to 40V Input Voltage Range
- High-Side Current Sense
- 20kHz Maximum Dimming Frequency
- Hysteretic Control: No Compensation
- 200mV Low Reference Voltage(5%)
- Dedicated Dimming Control Input
- Up to 2MHz Switching Frequency
- Adjustable Constant LED Current
- Up to 5A Constant Current Output
- 5V, 10mA On-Board Regulator
- -40°C to +125°C Operating Temperature Range
- SOT23-6 package

APPLICATIONS

- MR16 and Other LED Bulbs
- Power Led driver
- Constant Current Source

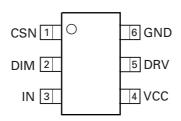

DESCRIPTION

The KB1365, step-down constant-current high-brightness LED (HB LED) drivers provide a cost-effective solution for automotive interior/exterior lighting, architectural and ambient lighting, LED bulbs such as MR16 and other LED illumination applications.

The KB1365 operate from a 5.5V to 40V input voltage range and feature a 5V/10mA on-board regulator. A high-side current-sense resistor adjusts the output current and a dedicated PWM input (DIM) enables a wide range of pulsed dimming.

The KB1365 is well suited for applications requiring a wide input voltage range. The high-side current-sensing and an integrated current-setting circuitry minimize the number of external components while delivering an LED current with +/-5% accuracy. A hysteretic control algorithm ensures excellent input-supply rejection and fast response during load transients and PWM dimming. The KB1365 features a 20% inductor current ripple. These devices operate up to 2MHz switching frequency, thus allowing for small component size.

SIMPLIFIED BLOCK DIAGRAM



PIN CONFIGURATION

SOT23-6 (TOP VIEW)

SOT23-6

ORDER INFORMATION

Part number Package		Marking
KB1365GRE	SOT23-6,Green	xxxx,Date Code with one bottom line

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	IN	Positive Supply Voltage Input. Bypass with a 1µF or higher value capacitor to GND.
2	CSN	Current-Sense Input
3	DIM	Logic-Level Dimming Input. Drive DIM low to turn off the current regulator. Drive DIM high to enable the current regulator.
4	GND	Ground
5	DRV	Gate Drive Output. Connect to the gate of an external n-channel MOSFET.
6	Vcc	Voltage Regulator Output. Connect a 1µF capacitor from V _{CC} to GND.
		SOT23-6

ABSOLUTE MAXIMUM RATINGS

IN, CSN, DIM to GND	0.3V to +40V
V _{CC} , DRV to GND	0.3V to +6V
CSN to IN	0.3V to +0.3V
Maximum Current into Any Pin	
(except IN, V _{CC} , and DRV)	±20mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
6-Pin SOT	350mW

Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Pin-to-Pin ESD Ratings (HB Model)	
*As per JEDEC51 Standard (Single-Layer Bo	oard).

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATION CONDITIONS

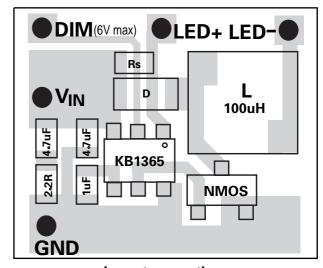
Parameter	Symbol		Values				
		Min.	Тур.	Max.	Unit		
Power supply voltage	V_{IN}	5.5	_	40	V		
Operating temperature	Тор	-40	+25	+125	$^{\circ}\!\mathbb{C}$		

ELECTRICAL CHARACTERISTICS

 $(V_{IN}=12V,\,V_{DIM}=V_{CC}\,C_{VCC}=1\mu F,\,R_{SENSE}=0.5\Omega,\,T_A=T_J=-40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at T_A=+25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Voltage Range	V _{IN}		5.5		40.0	V	
Maximum Current Regulator Switching Frequency	fsw				2	MHz	
Ground Current	IGND	DRV open			1.5	mA	
Supply Current	I _{IN}	V _{DIM} < 0.6V			425	μΑ	
Lindon oltogo Lookout	UVLO	$V_{IN} = V_{CSN} = V_{DIM}$, V_{IN} rising from 4V until $V_{DRV} > V_{CC} - 0.5V$	4.7 5.0		V		
Undervoltage Lockout	UVLO	$V_{IN} = V_{CSN} = V_{DIM}$, V_{IN} falling from 6V, $V_{DRV} < 0.5V$			4.5		
Undervoltage Lockout Hysteresis				0.5		V	
SENSE COMPARATOR							
	Vsnshi	$(V_{IN}$ - $V_{CSN})$ rising from 0V until V_{DRV} < 0.5V (25°C)	215	220	225	- mV	
Sense Voltage Threshold High		$(V_{IN}$ - $V_{CSN})$ rising from 0V until V_{DRV} < 0.5V (-40°Cto +125°C)	210	220	230	IIIV	
	Vsnslo	(V _{IN} - V _{CSN}) falling from 0.26V until V _{DRV} > (V _{CC} - 0.5V) (25°C)	175	180	185		
Sense Voltage Threshold Low		(V _{IN} - V _{CSN}) falling from 0.26V until V _{DRV} > (V _{CC} - 0.5V) (-40°Cto +125°C)	170 180 190		- mV		
Propagation Delay to Output High	tDPDH	Falling edge of (V _{IN} - V _{CSN}) from 0.26V to 0V to DRV high, C _{DRV} = 1nF		82		ns	
Propagation Delay to Output Low	tDPDL	Rising edge of (V _{IN} - V _{CSN}) from 0V to 0.26V to DRV low, C _{DRV} = 1nF		82		ns	
Current-Sense Input Current	I _{CSN}	$(V_{IN} - V_{CSN}) = 200 \text{mV}$			1	μΑ	
Current-Sense Threshold	CS _{HYS}	0.5V (25°C)		40	50	mV	
Hysteresis	COHYS	0.5V (-40°Cto +125°C)		40	60	mV	

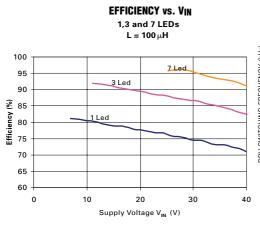
ELECTRICAL CHARACTERISTICS

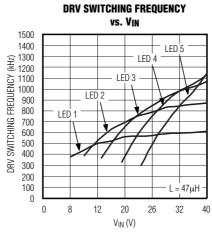

 $(V_{IN}=12V,\,V_{DIM}=V_{CC}\,C_{VCC}=1\mu F,\,R_{SENSE}=0.5\Omega,\,T_A=T_J=-40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C.)$ (Note 1)

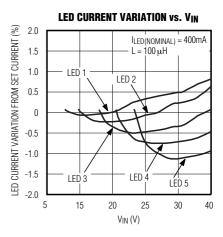
PARAMETER SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
GATE DRIVER			·			
Gate Driver Source Current		V _{CSN} = V _{IN} , V _{DRV} = 0.5 x V _{CC}		0.5		А
Gate Driver Sink Current		V _{CSN} = V _{IN} - 250mV, V _{DRV} = 0.5 x V _{CC}		1		А
Gate Driver Output-Voltage High	V _{OH}	I _{DRV} = 10mA	V _{CC} - 0.5			V
Gate Driver Output-Voltage Low	V _{OL}	$I_{DRV} = -10mA$			0.5	V
DIM INPUT						
Maximum DIM Frequency	f _{DIM}				20	kHz
DIM Input-Voltage High	VIH	V _{CSN} = V _{IN} , increase DIM until V _{DRV} > (V _{CC} - 0.5V)	2.8		6.0	V
DIM Input-Voltage Low	V _{IL}	V _{CSN} = V _{IN} , decrease DIM until V _{DRV} < 0.5V			0.6	V
DIM Hysteresis	DIM _{HYS}			200		mV
DIM Turn-On Time	tDIMON	DIM rising edge to V _{DRV} = 0.5 x V _{CC} , C _{DRV} = 1nF		100		ns
DIM Turn-Off Time	tDIMOFF	DIM falling edge to V _{DRV} = 0.5 x V _{CC} , C _{DRV} = 1nF		100		ns
DIM Input Leakage High		V _{DIM} = V _{IN}			10	μΑ
DIM Input Leakage Low		V _{DIM} = 0V	-1		+1	μΑ
V _{CC} REGULATOR						
Regulator Output Voltage	Vac	$I_{VCC} = 0.1 \text{mA} \text{ to } 10 \text{mA}, V_{IN} = 5.5 \text{V to } 40 \text{V}$	4.5		5.5	V
Regulator Output Voltage	Vcc	$I_{VCC} = 0.1$ mA to 10mA, $V_{IN} = 5.5$ V to 40V	4.0		5.5	V
Load Regulation		$I_{VCC} = 0.1$ mA to 10mA, $V_{IN} = 12$ V		4		Ω
Line Regulation		$V_{IN} = 6V \text{ to } 40V, I_{VCC} = 10\text{mA}$		11		mV
Power-Supply Rejection Ratio	PSRR	$V_{IN} = 12V$, $I_{VCC} = 5mA$, $f_{IN} = 10kHz$		-35		dB
Current Limit	1	$V_{IN} = 5.5V, V_{CC} = 0V$	45		mA	
Current Littill	ILIM	V _{IN} = 5.5V, V _{CC} = 4V	18		mA	
Regulator Startup Time	tstrat	V _{CC} = 0 to 5.5V		350		us

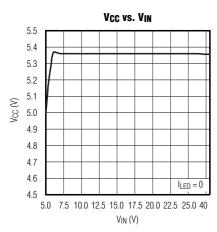
Note 1: All devices are 100% production tested at $T_J = +25^{\circ}C$ and $+125^{\circ}C$. Limits to $-40^{\circ}C$ are guaranteed by design.

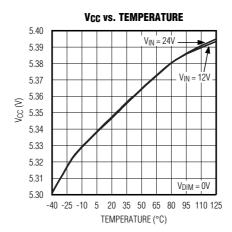
Note 2: Vin Bypass Capacitor

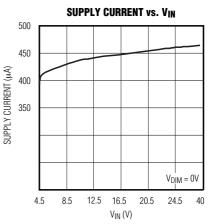

Many types of capacitors can be used for input bypassing, however, caution must be exercised when using multi-layer ceramic capacitors. Because of the self-resonant and high Q characteristics of some types of ceramic capacitors, high voltage transients can be generated under some start-up conditions, such as connecting the charger input to a live power source. Adding a 2.2Ω resistor in series with an X5R ceramic capacitor will minimize start-up voltage transients.

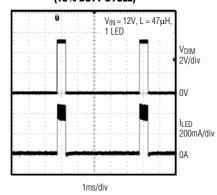


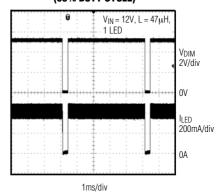

Layout suggestion


TYPICAL PERFORMANCE CHARACTERISTICS

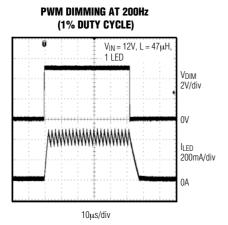

 $(V_{IN} = V_{DIM} = 12V, C_{VCC} = 1\mu F, R_{SENSE} = 0.5\Omega$ connected between IN and CSN. Typical values at $T_A = +25$ °C, unless otherwise noted.)

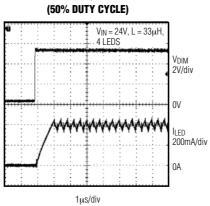


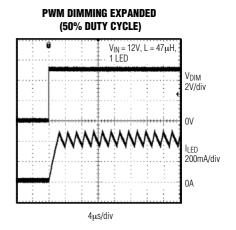


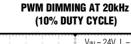


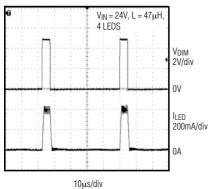
PWM DIMMING AT 200Hz (10% DUTY CYCLE)

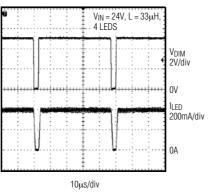

PWM DIMMING AT 200Hz (90% DUTY CYCLE)

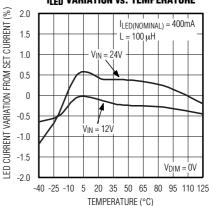



TYPICAL PERFORMANCE CHARACTERISTICS


 $(V_{IN} = V_{DIM} = 12V, C_{VCC} = 1\mu F, R_{SENSE} = 0.5\Omega$ connected between IN and CSN. Typical values at $T_A = +25^{\circ}C$, unless otherwise noted.)


PWM DIMMING EXPANDED





Detailed Description

The KB1365 are step-down, constant-current, high-brightness LED (HB LED) drivers. These devices operate from a 5.5V to 40V input voltage range and provide up to 0.5A of source and 1A of sink drive capability to the gate of an external MOSFET. A high-side current-sense resistor sets the output current and

Undervoltage Lockout (UVLO)

The KB1365 include a 5.0V undervoltage lockout (UVLO) with 500mV hysteresis. When V_{IN} falls below 4.5V, DRV goes low, turning off the external n-channel MOSFET. DRV goes high once V_{IN} is 5V or higher.

5V Regulator

VCC is the output of a 5V regulator capable of sourcing 10mA. Bypass VCC to GND with a 1µF capacitor.

DIM Input

The KB1365 allow dimming with a PWM signal at the DIM input. A logic level below 0.6V at DIM forces the KB1365's DRV output low, turning off the LED current. To turn the LED current on, the logic level at DIM must be at least 2.8V.

a dedicated PWM dimming input (DIM) allows for a wide range of independent pulsed dimming.

The high-side current-sensing scheme and on-board current-setting circuitry minimize the number of external components while delivering LED current with a $\pm 5\%$ accuracy, using a 1% sense resistor. See the Functional Diagram.

For the values of V_{SNSHI} and V_{SNSLO}, see the *Electrical Characteristics*.

Current Regulator Operation

The KB1365 regulate the LED output current using an input comparator with hysteresis (Figure 1). As the current through the inductor ramps up and the voltage across the sense resistor reaches the upper threshold, the voltage at DRV goes low, turning off the external MOSFET. The MOSFET turns on again when the inductor current ramps down through the freewheeling diode until the voltage across the sense resistor equals the lower threshold. Use the following equation to determine the operating frequency:

$$f_{SW} = \frac{(V_{IN} - n \times V_{LED}) \times n \times V_{LED} \times R_{SENSE}}{V_{IN} \times \Delta V \times L}$$

where n = number of LEDs, V_{LED} = forward voltage drop of one LED, and ΔV = (V_{SNSHI} - V_{SNSLO}).

Applications Information

Setting nominal average output current with external resistor RS

The nominal average output current in the LED(s) is determined by the value of the external current sense resistor (R_S) connected between V_{IN} and CSN and is given by:

$$I_{OUTnom} = 0.2/R_{S}$$

The table below gives values of nominal average output current for several preferred values of current setting resistor (R_S) in the typical application circuit shown on page 1:

R _S (Ω)	Nominal average output current (mA)	Rs Power (w)
0.1	2000	0.4
0.2	1000	0.2
0.57	350	0.07

Inductor selection

Recommended inductor values for the KB1365 are in the range 22μH to 220μH(100μH Typ.).

APPLICATION CIRCUIT

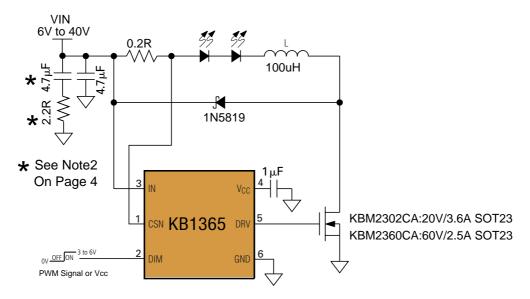


Figure 1a.KB1365 Typical Application Circuit with 1A Output.

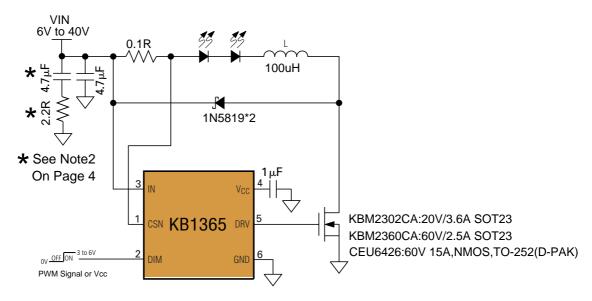
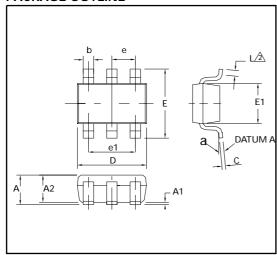
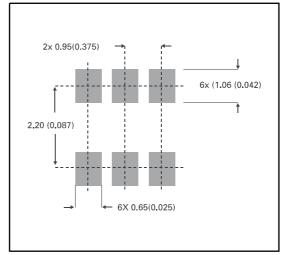



Figure 1a.KB1365 Typical Application Circuit with 2A Output.


PACAGE DESCRIPTION

Small Outline SOT23-6

PACKAGE OUTLINE

PAD LAYOUT DETAILS

CONTROLLING DIMENSIONS IN MILLIMETRES APPROX CONVERSIONS INCHES.

PACKAGE DIMENSIONS

DIM	Millim	netres	Inches		DIM	Millimetres		Inches	
DIIVI	Min	Max	Min	Max	DIIVI	Min	Max	Min	Max
Α	0.90	1.45	0.35	0.057	Е	2.60	3.00	0.102	0.118
A1	0.00	0.15	0	0.006	E1	1.50	1.75	0.059	0.069
A2	0.90	1.30	0.035	0.051	L	0.10	0.60	0.004	0.002
b	0.35	0.50	0.014	0.019	е	0.95	REF	0.037	REF
С	0.09	0.20	0.0035	0.008	e1	1.90 REF		0.074	REF
D	2.80	3.00	0.110	0.118	L	0°	10°	0°	10°